Abstract
Let L > K ≧ Φ, LK, be three fields such that: (1) L/K is not purely inseparable, and (2) L/Φ is transcendental. Then Herstein’s theorem [2] asserts the existence of u ∈ L such that f(u) ∉ K for every non-constant polynomial f(X) ∈ Φ[X].
Publisher
Cambridge University Press (CUP)
Reference4 articles.
1. A Theorem Concerning Three Fields
2. Algebra 1
3. Interprétation algébrico-géométriques du quatorzième problème de Hilbert;Zariski;Bull. Sci. Math.,1954
4. Faith Carl , A structure theory for semialgebraic extensions of division algebras, Journal für die reine und angewandte Mathematik, (1961).