Abstract
Since E. Wigner set up a framework of the relativistically covariant quantum mechanics, several aspects of unitary representations of the Poincaré group have been investigated (see [8], [16]). In this paper it will be shown that some unitary representations of the Poincaré group are irreducible, even if they are restricted to the Poincaré semigroup (Theorem 1, 2 and 3).
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Hormander L. , Linear partial differential operators, Springer, 1963.
2. Angelopoulos E. , Decomposition sur le sou-groupe de Poincaré de la represéntation de mass positive et de spin nul du groupe de Poincaré. Ann. Inst. Henri Poincaré XV, no. 4 (1971), 303–320.
3. Tatsuuma N. , Decomposition of Kronecker products of representations of inhomogeneous Lorentz group, Proc. Japan Acad. 38 (1962), 156–160.
4. Radhakrishnan B. and Mukunda N. , Spacelike representations of the inhomogeneous Lorentz group in a Lorentz basis, J. Math. Phys. 15 (1974), 477–490.
5. Lax P. D. and Phillips R. S. , Scattering theory, Academic Press, 1967.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献