Twistor theory of manifolds with Grassmannian structures

Author:

Machida Yoshinori,Sato Hajime

Abstract

AbstractAs a generalization of the conformal structure of type (2, 2), we study Grassmannian structures of type (n, m) forn, m≥ 2. We develop their twistor theory by considering the complete integrability of the associated null distributions. The integrability corresponds to global solutions of the geometric structures.A Grassmannian structure of type (n, m) on a manifoldMis, by definition, an isomorphism from the tangent bundleTMofMto the tensor productV ⊗ Wof two vector bundlesVandWwith ranknandmoverMrespectively. Because of the tensor product structure, we have two null plane bundles with fibresPm-1(ℝ) andPn-1(ℝ) overM. The tautological distribution is defined on each two bundles by a connection. We relate the integrability condition to the half flatness of the Grassmannian structures. Tanaka’s normal Cartan connections are fully used and the Spencer cohomology groups of graded Lie algebras play a fundamental role.Besides the integrability conditions corrsponding to the twistor theory, the lifting theorems and the reduction theorems are derived. We also study twistor diagrams under Weyl connections.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference36 articles.

1. Differential systems associated with simple graded Lie algebras;Yamaguchi;Advanced Studies in Pure Math,1993

2. On geometric theory of systems of ordinary differential equations;Tanaka;Lectures in Colloq. on Diff. Geom. at Sendai,1989

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactions between para-quaternionic and Grassmannian geometry;Annals of Global Analysis and Geometry;2020-01-27

2. Sur les variétés $X\subset \mathbb{P}^N$ telles que par $n$ points passe une courbe de $X$ de degré donné;Bulletin de la Société mathématique de France;2013

3. CURVATURE SUBMODULES FOR GRASSMANN STRUCTURES WITH TORSION;International Journal of Geometric Methods in Modern Physics;2006-09

4. Geometric Quantities of Manifolds with grassmann structure;Nagoya Mathematical Journal;2005

5. Holonomy, Geometry and Topology of Manifolds with Grassmann Structure;Non-Euclidean Geometries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3