Abstract
Let k be an algebraic number field of finite degree and be a prime ideal of k, lying above a rational prime p. We denote by G () the multiplicative group of residue classes modulo (N ≧ 0) which are relatively prime to . The structure of G () is well-known, when N = 0, or k is the rational number field Q. If k is a quadratic number field, then the direct decomposition of G () is determined by A. Ranum [6] and F.H-Koch [4] who gives a basis of a group of principal units in the local quadratic number field according to H. Hasse [2]. In [5, Theorem 6.2], W. Narkiewicz obtains necessary and sufficient conditions so that G () is cyclic, in connection with a group of units in the -adic completion of k.
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献