Some types of regularity for the Dirichlet problem

Author:

Sadi Amar

Abstract

The question of whether the existence of a harmonic majorant in a relative neighbourhood of each point of a boundary of a domain D implies the existence of a harmonic majorant in the whole of D has received great attention in recent years and has been dealt with by several authors in different settings. The most general results to date have been achieved in [10] with the Martin boundary. In [9], the author arrives, by independent means, at the conclusions of [10] in the particular case where D is a Lipschitz domain.In this paper, we answer the question in domains with suitably regular topological frontiers. Our methods rely heavily on the possibility of obtaining an extented-representation for nonnegative superharmonic functions defined near a frontier point. This naturally led to the introduction and the study of new types of regularity for the generalised Dirichlet problem. As well as their suitability in dealing with the question of harmonic majorisation, they present an intrinsic importance as natural extensions of the (classical) regularity. For simplicity reasons, we will treat the finite boundary points and the point at infinity separately.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3