Abstract
In [8] a necessary and sufficient condition was given for determining the equivalence of two asymptotic boundary paths for an analytic function w = f(p) on a Riemann surface F. In this paper we give a necessary and sufficient condition for determining the nonequivalence of two asymptotic boundary paths for f(z) analytic in |z| < R, 0 < R ≤ + ∞. We shall, also, illustrate some applications of the main result and examine a class of functions introduced by Valiron.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. An elementary proof of a theorem of Valiron;Choike;Notices of the A.M.S.,1969
2. Sur les singularités de certaines fonctions holomorphes et de leur inverses;Valiron;J. Math, pures et appl.,1936
3. The Theory of Cluster Sets
4. �ber die asymptotischen Werte der ganzen Funktionen endlicher Ordnung
5. Analytic Topology;Whyburn;A.M.S. Coll. Pub.,1942