Abstract
Divide the ideal boundary of a noncompact Riemannian manifold M into two parts δ0 and δ1 Viewing that M is surrounded by two conducting electrodes δ0 and δ1 we ask whether (M; δ0, δ1) functions as a condenser in the sense that the unit electrostatic potential difference between two electrodes is produced by putting a charge of finite energy on one electrode when the other is grounded. The generalized condenser problem asks whether there exists a subdivision δ0 ∪ δ1 of the ideal boundary of M such that (M; δ0, δ1 functions as a condenser.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献