Dualizing Complex of a Toric Face Ring

Author:

Okazaki Ryota,Yanagawa Kohji

Abstract

A toric face ring, which generalizes both Stanley-Reisner rings and affine semigroup rings, is studied by Bruns, Römer and their coauthors recently. In this paper, under the “normality” assumption, we describe a dualizing complex of a toric face ring R in a very concise way. Since R is not a graded ring in general, the proof is not straightforward. We also develop the square-free module theory over R, and show that the Cohen-Macaulay, Buchsbaum, and Gorenstein* properties of R are topological properties of its associated cell complex.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference19 articles.

1. Polyhedral algebras, arrangements of toric varieties, and their groups, Computational commutative algebra and combinatorics;Bruns;Adv. Stud. Pure Math.,2001

2. Generalized $H$-Vectors, Intersection Cohomology of Toric Varieties, and Related Results

3. Cohen-Macaulay Section Rings

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential operators, retracts, and toric face rings;Algebra & Number Theory;2023-10-03

2. On Some Local Cohomology Spectral Sequences;International Mathematics Research Notices;2018-08-24

3. Dualizing complexes of seminormal affine semigroup rings and toric face rings;Journal of Algebra;2015-03

4. Algebra retracts and Stanley–Reisner rings;Journal of Pure and Applied Algebra;2014-09

5. On the Koszul property of toric face rings;Journal of Commutative Algebra;2014-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3