Abstract
AbstractLet Xℝ ⊂ ℝN a real analytic set such that its complexification Xℂ ⊂ ℂN is normal with an isolated singularity at 0. Let fℝ : Xℝ → ℝ a real analytic function such that its complexification fℂ : Xℂ → ℂ has an isolated singularity at 0 in Xℂ. Assuming an orientation given on to a connected component A of we associate a compact cycle Γ(A) in the Milnor fiber of fℂ which determines completely the poles of the meromorphic extension of or equivalently the asymptotics when T → ±∞ of the oscillating integrals . A topological construction of Γ(A) is given. This completes the results of [BM] paragraph 6.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Archimedean zeta functions and oscillatory integrals;-Adic Analysis, Arithmetic and Singularities;2022