Abstract
Recently, systematic applications of the Scott-Solovay Boolean valued set theory were done by several authors; Takeuti [25, 26, 27, 28, 29, 30], Nishimura [13, 14] Jech [8] and Ozawa [15, 16, 17, 18, 19, 20] in analysis and Smith [23], Eda [2, 3] in algebra. This approach seems to be providing us with a new and powerful machinery in analysis and algebra. In the present paper, we shall study Banach space objects in the Scott-Solovay Boolean valued universe and provide some useful transfer principles from theorems of Banach spaces to theorems of Banach modules over commutative AW*-algebras. The obtained machinery will be applied to resolve some problems concerning the module structures of von Neumann algebras.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献