Triangles meeting triangles

Author:

Crilly Tony,Fletcher Colin R.

Abstract

We consider two connected problems: For a given but otherwise arbitrary triangle in the plane, to construct similar triangles which ‘meet’ this triangle.To find the triangle so formed which has least area.1. Constructing a triangle which meets anotherThese problems beg the question of what is meant by ‘meet’ and we now aim to make this precise: Definition: A triangle XYZ will meet a given triangle ABC if on the triangle ABC, the vertex X lies on a line through AB, the vertex Y lies on a line through BC, and the vertex Z lies on a line through CA.When triangle XYZ is actually ‘in’ the triangle ABC, ‘meet’ is synonymous with the traditional ‘inscribe’ (such as in case (1) below). For ‘inscribe’ we understand that some of X, Y, Z may coincide with the vertices of ABC (such as case (2) below).More generally we use ‘meet’ to extend these possibilities by allowing XYZ to meet triangle ABC with its sides produced externally (such as case (3) below).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3