Application of Satellite Data for Retrieving the Light Absorption Characteristics in the Black Sea Waters

Author:

Suetin V. S.,Korolev S. N., ,

Abstract

Purpose. he work is aimed at studying the effects of light absorption in the Black Sea waters with due regard for the variations of its individual components, and how they are manifested in the NASA archival results of calculating the chlorophyll a concentration obtained by processing satellite data using the universal operational method. Methods and Results. The NASA archival data of the MODIS and SeaWiFS satellite instruments, and the values of the light absorption components (determined by the method of Generalized ocean color inversion model for retrieving marine inherent optical properties (GIOP)) related to yellow substance and phytoplankton were analyzed. In order to avoid possible manifestations of various distortions in the results of determining the remote sensing reflectance of the sea and in the products resulted from application of the GIOP method, only the specially selected and sufficiently reliable test data from two areas located near the Crimea Southern Coast and south of the Danube estuary were used. Conclusions. In the considered examples with low content of chlorophyll a in the seawater, the yellow substance plays a predominant role in light absorption in the spectrum blue part, whereas if the chlorophyll a content is high, the phytoplankton contribution is dominant. The revealed relationship between the light absorption components related to yellow substance and phytoplankton significantly differs from that implicitly preset as a basis of the universal method (applied in NASA for the satellite data operational processing) for determining the chlorophyll a concentration. This, in its turn, is manifested in the fact that the data on the chlorophyll a concentration in the Black Sea stored in the NASA archive may be overestimated in case the chlorophyll a concentration is low, and underestimated – in case it is high.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3