Vertical Transfer of Momentum by Inertia-Gravity Internal Waves on a Two-Dimensional Shear Flow

Author:

Slepyshev A. A.,

Abstract

Purpose. The paper is aimed at investigating the momentum vertical transfer by inertia-gravity internal waves on a two-dimensional flow with a vertical shear of velocity, and also at studying the Stokes drift of liquid particles and the mean current effect on it. Methods and Results. Free internal waves in an infinite basin of constant depth are considered in the Boussinesq approximation with the regard for the Earth rotation. Two components of the mean current velocity depend on the vertical coordinate. The equation for the vertical velocity amplitude has complex coefficients; therefore the eigenfunction and the wave frequency are complex. The corresponding boundary value problem is solved numerically by the implicit Adams scheme of the third order of accuracy. The wave frequency at a fixed wavenumber was found by the shooting method. It was determined that the frequency imaginary part was small and could be either negative or positive depending on a wave number and a mode number. Thus, both weak attenuation and weak amplification of an internal wave are possible. The vertical wave momentum fluxes are nonzero and can exceed the corresponding turbulent fluxes. The Stokes drift velocity, transverse to the wave direction, is nonzero and less than the longitudinal velocity. The vertical component of the Stokes drift velocity is also nonzero and four orders of magnitude less than the longitudinal component. The signs of the vertical component of the Stokes drift velocity for the waves with the frequencies 10 and 16 cph are opposite, since the signs of their frequency imaginary parts are different; and the vertical component of the Stokes drift velocity is proportional to the wave frequency imaginary part. Conclusions. The vertical momentum wave flux of inertia-gravity internal waves differs from zero in the presence of the current whose velocity component, transverse to the wave propagation direction, depends on the vertical coordinate. The component of the Stokes drift velocity, transverse to the wave propagation direction, is nonzero and less than the longitudinal one. The vertical component of the Stokes drift velocity is also nonzero and can contribute to formation of the vertical fine structure.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3