Mathematical Modeling the Dynamics of the Bottom Sediments Granulometric Composition in the Balaklava Bay Affected by the Wind Waves

Author:

Gurov K. I.,Fomin V. V., ,

Abstract

Purpose. Based on the mathematical modeling methods, influence of the wind waves on redistribution of the sand fractions in the semi-closed estuary-type water area is estimated using the Balaklava Bay as an example. Methods and Results. A two-dimensional version of the XBeach model with a constant grid spacing 10 m was used. The characteristics of wind waves were preset using the JONSWAP spectrum. The calculations were carried out for a storm event lasting about 12 hours once a year. The in-situ data on the particle size distribution in the bottom sediments resulted from the monitoring observations in the Balaklava Bay region was used in the numerical experiments. Conclusions. The results of modeling showed that the basic determining factors regulating the sediments movement were the depth and the bottom slope. It is noted that changing of the bottom inclination angle between the isobaths 6–7 and 7–8 m leads to deposition of the large and medium fractions, and in the area between the isobaths 9–10 and 10–12 m – to accumulation of fine sand. It was revealed that in the Balaklava Bay water area, the main redistribution of sand material caused by the storm waves took place within the southern basin, as well as at the bay exit in the coastal zone of the Megalo-Yalo Gulf. This is primarily determined by the features of the Balaklava Bay coast orography, namely, the knee-shaped narrowness separating the northern and southern basins. Nevertheless, in the isolated northern part of the Balaklava Bay being affected by the storm waves, insignificant dynamics of sand material was observed. The fractions of bottom sediments are redistributed from the western coast to the central part of the basin and to the eastern coast of the bay.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3