Research of the Aerosol Optical and Microphysical Characteristics of the Atmosphere over the Black Sea Region by the FIRMS System during the Forest Fires in 2018–2019

Author:

Kalinskaya D. V.,Papkova A. S.,Kabanov D. M., , ,

Abstract

Purpose. The Black Sea region where the forest fires were recorded by the FIRMS system, as well as the atmosphere above it, namely the fire-induced variation of the atmospheric aerosol basic optical characteristics, were the main objects of the investigation. The study is aimed at examining the fires in the Black Sea region in 2018–2019 for assessing correlation between these events and variability of the basic optical characteristics over the Black Sea. Methods and Results. Based on the FIRMS system data, variations of intensity of the fire-induced radiation were studied. The results of statistical processing of the MODIS and VIIRS satellite data on the fires in 2018–2019 were represented. For the dates when the fire numbers were the highest in the Black Sea region, the basic optical and microphysical characteristics of the atmospheric aerosol were analyzed due to the SPM and AERONET data. The dates when the fire intensity was particularly high (based on the MODIS and VIIRS data) were analyzed and compared with the dates when the anomalous values of the atmospheric aerosol optical characteristics were recorded over the region under study. Conclusions. For the fire events in the Black Sea region revealed due to the MODIS and VIIRS data, complex analysis of the air mass transfer was performed by the model HYSPLIT, and the aerosol was typed by the CALIPSO algorithm. On June 22, 2019 the most intense fires were recorded. According to the aerosol typing by the CALIPSO algorithm, on this day the predominant aerosol types were the contaminated dust and smoke. Using the MODIS and VIIRS data, investigation of possible source of the aerosol transfer on this date showed that the area of intense inflammationn and smoke was located to the northeast from the Black Sea region. Since the satellite-derived data on this day showed no dust transfer either from the Sahara or the Syria deserts, it is possible to conclude that increase of the values of aerosol optical depth АОD (500) was conditioned by transfer of the aerosol resulted from biomass burning from the north to the Black Sea region.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3