Characteristics of Short-Period Internal Waves in the Avacha Bay Based on the In Situ and Satellite Observations in August-September, 2018

Author:

Svergun E. I., ,Zimin A. V., , ,

Abstract

Purpose. The paper is aimed at evaluating the characteristics of short-period internal waves in different regions of the Avacha Bay in the Рacific Ocean concerning their hydrological and morphometric conditions. Methods and Results. The characteristics of internal waves are assessed through synthesizing the results of the in situ studies in the Avacha Bay in August-September, 2018, the high-resolution remote sensing data and the results of tidal modeling. The data of the in situ and satellite observations of internal waves were also directly compared. The results show that in the shallow part of the Avacha Bay, the waves, whose heights are from 10 to 15 m were observed. They constitute 10 % of the total number of cases. In the deep-water part of the bay, the internal waves are also often observed, but their maximum height does not exceed 10 m. The satellite images show 72 manifestations of short-period internal waves. Some of them spread to the coast with a tidal frequency from the generation source located around the 500 m isobath where the bottom abruptly slows down. Conclusions. The results of the investigation revealed a pronounced relationship between the wave trains recorded in the shallow-water area and the semidiurnal tidal dynamics. Analysis of the hydrological situation and the satellite images permitted to assume that the internal waves could be generated as a result of not only a barotropic tide collapse, but also due to the inertial oscillations of the frontal zone formed by the Kamchatka current meanders in the presence of a shallow sharpened pycnocline. Having been analyzed, the synchronous satellite and in situ observations made it possible to find out that the internal waves of the 5–8 m height were distinctly manifested on the sea surface in case the pycnocline depth was 10–20 m.

Publisher

FSBSI MHI

Subject

Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3