Dynamics of Underwater Bar of Sandy Coast under the Influence of Wave Action According to the Monitoring Observations
-
Published:2020-09
Issue:4
Volume:27
Page:
-
ISSN:1573-160X
-
Container-title:Physical Oceanography
-
language:
-
Short-container-title:PhO
Author:
Korzinin D. V.,Shtremel M. N., ,
Abstract
Purpose. Morphodynamic system of the accumulative sandy coast can include one or more underwater bars. Position and shape of the underwater bar can reflect both seasonal changes of the coastal profile and its unidirectional movements landward and seaward. Determination of the character of the underwater bar movement under the influence of various wave conditions permits to reveal common factors of the coastal deposit multidirectional transport along the coast profile. Methods and Results. The results of field observations of morphodynamics of a section of the Baltic Spit sandy coast (600 m length) were analyzed. From May to November 2019, a series of measurements of the coastal zone relief were conducted. The obtained data were analyzed along with the wave regime parameters (reanalysis ERA5 data was used). The coastal profile of the area under study is complicated by the external underwater bar with its crest located at the depth 2.65 m, and by the internal one of a crescent shape. Conclusions. Analysis of displacement of the external underwater bar from May to November showed that this form was of a morphodynamics two-dimensional character, i.e. it possessed the same morphometric characteristics along the coast. It was revealed that the underwater bar crest was located at the depths close to those of wave breaking during the most recent relatively strong and sustainable storm. Based on this concept as well as on the available literature data on the relationship between a wave height and dynamics of an underwater bar crest, described is the landward displacement (recorded during the observation period) of the external underwater bar. Due to the field data, it was shown that the underwater bar morphodynamics was effected both by duration of individual waves and by difference between the wave parameters of a sequence of storm events.
Subject
Geophysics,Oceanography