Author:
Arrofiqoh Erlyna Nour,Harintaka Harintaka
Abstract
Citra resolusi tinggi dari teknologi UAV (Unmanned Aerial Vehicle) dapat memberikan hasil yang baik dalam ekstraksi informasi sehingga dapat digunakan untuk monitoring dan updating data suatu wilayah. Pengambilan informasi dari citra dengan interpretasi visual sangat bergantung pada interpreter. Kendala utama interpretasi secara manual adalah saat melakukan pengenalan objek secara visual, khususnya pada objek tanaman pertanian. Kesalahan hasil asumsi interpreter dapat terjadi ketika citra yang diekstraksi memiliki objek yang kompleks dan memiliki karakter fisik yang hampir mirip apabila dilihat dari foto udara yang hanya memiliki band RGB (Red, Green, dan Blue). Penelitian ini mencoba mengimplementasikan pendekatan klasifikasi semantik secara otomatis yang dapat membedakan jenis tanaman sebagai alternatif pengenalan objek berdasarkan metode deep learning menggunakan Convolutional Neural Network (CNN). Metode CNN merupakan salah satu metode deep learning yang mampu melakukan proses pembelajaran mandiri untuk pengenalan objek, ekstraksi objek dan klasifikasi serta dapat diterapkan pada citra resolusi tinggi yang memiliki model distribusi nonparametrik. Pada penelitian ini, diterapkan algoritma CNN untuk membedakan jenis tanaman dengan memberikan label semantik dari objek jenis tanaman. Penelitian menggunakan 5 kelas jenis tanaman, yaitu kelas tanaman padi, bawang merah, kelapa, pisang, dan cabai. Proses learning jaringan menghasilkan akurasi 100% terhadap data training. Pengujian terhadap data validasi menghasilkan akurasi 93% dan akurasi terhadap data tes 82%. Hasil penelitian ini menunjukkan bahwa penggunaan metode CNN berpotensi untuk pendekatan pengenalan objek secara otomatis dalam membedakan jenis tanaman sebagai bahan pertimbangan interpreter dalam menentukan objek pada citra.
Publisher
Geospatial Information Agency of The Republic of Indonesia
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献