IMPLEMENTASI LEXICON BASED DAN NAIVE BAYES PADA ANALISIS SENTIMEN PENGGUNA TWITTER TOPIK PEMILIHAN PRESIDEN 2019

Author:

Aulia Gusti Nur1,Patriya Eka1

Affiliation:

1. Fakultas Teknologi Industri Universitas Gunadarma

Abstract

Pilpres saat ini cukup menyita perhatian, karena berbagai rumor yang beredar. Masyarakat juga menjadi sasaran elit politik, dimana suara mereka merupakan penentu keberlangsungan arah politik untuk lima tahun kedepan. Opini-opini positif, netral maupun negatif dapat menimbulkan ancaman munculnya berita bohong (hoax). Salah satu sarana yang digunakan masyarakat dalam mengekspresikan pilihan politiknya adalah melalui media sosial salah satunya twitter. Data seperti opini publik dapat diolah menjadi sebuah informasi yang bermanfaat, salah satunya melalui analisis sentimen. Pada penelitian ini, akan dilakukan analisis sentimen pada Twitter tentang pemilihan presiden 2019. Tahapan analisis sentimen pada penelitian ini terdiri dari akuisisi data, pre-processing, klasifikasi data, evaluasi data dan visualisasi data. Preprocessing dilakukan dengan case folding, normalisasi data, filtering, ubah kata baku, stopword dan stemming. Penelitian ini melakukan 2 metode yaitu dengan metode Lexicon Based dan Naïve Bayes Classifier. Hasil akhir dari analisis kemudian dihitung nilai akurasi menggunakan confusion matrix dan di visualisasikan menggunakan web server. Penentuan sentimen prediksi dilakukan menggunakan metode Lexicon Based dan Labelisasi dengan perhitungan secara manual. Data latih dan data uji akan digunakan dalam proses pelatihan dan pengujian menggunakan Naive Bayes Classifier. Hasil klasifikasi yang dilakukan oleh metode Naive Bayes Classifier disebut sentimen aktual. Perhitungan tingkat keakurasian antara sentimen prediksi terhadap sentimen aktual menggunakan pengujian confusion matrix. Hasil yang didapatkan adalah tingkat akurasi antara sentimen prediksi dan sentimen aktual dengan Lexicon Based sebesar 64,49% pada data uji dan pada data latih sebanyak 94,2% serta dengan menggunakan Labelisasi dan Naive Bayes Classifier sebesar 86,53% pada data uji dan data latih sebesar 94,08%. Hasil penelitian ini diharapkan dapat membantu melakukan riset atas opini masyarakat pada Twitter mengenai Pilpres 2019 yang mengandung sentimen positif, negatif atau netral.

Publisher

Gunadarma University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3