Affiliation:
1. A.E. Warren, S.B. Castleberry, D. Markewitz Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602Present address of A.E. Warren: Florida Fish and Wildlife Conservation Commission, Panama City, Florida 32409
2. L.M. Conner Joseph W. Jones Ecological Research Center at Ichauway, Newton, Georgia 39870
Abstract
Abstract
The southeastern pocket gopher Geomys pinetis is absent from a large portion of its historical range. Translocation may represent a viable management technique to reestablish populations into suitable habitat. However, several aspects of the species' ecology are poorly understood, making development of an effective translocation approach challenging. Therefore, we used radiotelemetry to examine home range, survival, dispersal, and daily activity patterns of the southeastern pocket gopher in southwestern Georgia. We measured soil and vegetation characteristics within individual home ranges and examined relationships between home range size, habitat variables, and body mass. Mean home range size of 17 radio-tagged pocket gophers was 921.9 m2 (range = 43.4–2246.8 m2). Home range size was positively related to body mass, percent silt at a depth of 25 cm, and soil carbon content at 75 cm and was negatively related to percent sand at 25 cm, percent clay at 50 cm, and ground cover of grasses other than wiregrass Aristida beyrichiana. Survival rate was 0.78 (range = 0.50–1.00) over the 51-wk study, and we documented predation, likely by avian predators, on two individuals. Three individuals dispersed, with a maximum dispersal distance of 319.1 m (range = 143.2–319.1 m), the farthest known southeastern pocket gopher dispersal. Pocket gophers exhibited greater activity from 0000 to 0400 hours and from 1600 to 2000 hours, contrasting previous research that southeastern pocket gophers were equally active throughout the diel period. Our home range size estimates for southeastern pocket gophers are the first determined using radiotelemetry and are considerably smaller than previous estimates. Although we documented dispersal distances more than 300 m, the fragmented nature of current and restored habitats likely will prevent large-scale natural colonization. Our results provide information important for maximizing success in future southeastern pocket gopher translocation efforts.
Publisher
U.S. Fish and Wildlife Service
Subject
Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献