Occupancy Modeling of Woodpeckers: Maximizing Detections for Multiple Species With Multiple Spatial Scales

Author:

Baumgardt Jeremy A.1,Sauder Joel D.1,Nicholson Kerry L.1

Affiliation:

1. Idaho Department of Fish and Game, 3316 16th Street, Lewiston, Idaho 83501

Abstract

Abstract Numerous forest birds benefit from woodpecker presence or have similar habitat requirements. Monitoring populations of forest woodpeckers can be useful for management decisions regarding these and other forest species. Usefulness of monitoring efforts depends on methods used and the quality of resulting parameter estimates. Estimating the proportion of area occupied by a species can be an attractive and affordable alternative to abundance or survival estimates. The purpose of this study was to assess the distribution and area of occupancy for pileated woodpeckers (Drycopus pileatus) and American three-toed woodpeckers (Picoides dorsalis) in north-central Idaho, and to compare occupancy estimates using silent point counts, playback surveys, and playback surveys that incorporated estimates of detection probability (p). We used a hierarchical multiscale framework that allowed estimation of occupancy at two spatial scales and applied a removal design such that repeat visits to sampling stations was not necessary to estimate p. The initial naïve estimate of occupancy (using presence–absence data) for pileated woodpecker was 0.39, which increased to 0.59 using playback surveys. The corrected estimate of occupancy at the 1-km2 unit scale was 0.70. The naïve estimates of occupancy for American three-toed woodpeckers using silent point counts and playback surveys were 0.14 and 0.34, respectively. The unbiased estimate of occupancy at the 1-km2 unit scale was 0.71. Detection probabilities are known to vary spatially and temporally for numerous reasons. Thus, comparisons of naïve estimates of occupancy to monitor forest woodpeckers would be imprudent and could lead to poor management decisions. We recommend incorporating detection probability for monitoring wildlife species and show how this can be done within a single sampling framework for species that utilize the landscape at disparate scales.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3