The Alive-in-Range Medium Access Control Protocol to Optimize Queue Performance in Underwater Wireless Sensor Networks

Author:

Raina Vikas,Jha Manish Kumar,Bhattacharya Partha Pratim

Abstract

Time synchronization between sensor nodes to reduce the end-to-end delay for critical and real time data monitoring can be achieved by cautiously monitoring the mobility of the mobile sink node in underwater wireless sensor networks. The Alive-in-Range Medium Access Control (ARMAC) protocol monitors the delay of sensitive, critical and real-time data. The idea evolves as it involves reduction in duty cycle, precise time scheduling of active/sleep cycles of the sensors, monitoring the mobility of the sink node with the selection of appropriate queues and schedulers. The model for the path loss due to attenuation of electromagnetic wave propagation in the sea water is explained. The three-path reflection model evaluating reflection loss from the air-water and watersand interfaces as a function of distance between sensors and water depth is introduced. The algorithms for effective path determination and optimum throughput path determination are elaborated. The results verify that implementation of the Alive-in-Range MAC protocol has reduced the total number of packets dropped, the average queue length, the longest time in queue, the peak queue length and the average time in queue significantly, making it relevant for critical and real-time data monitoring.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3