Optimized Energy Aware Resource Allocation Algorithm Using Software Defined Network Technology

Author:

Al-Musawi Ranya,Al-Khatib ObadaORCID

Abstract

The number of data centers (DCs) used for storing and processing data has evolved rapidly in recent years. However, the operations held by DCs may relate to a number of disadvantages, primarily presuming in excessive energy and power consumption due to the poor management standards applied. This may lead to a situation in which many devices within the DC operate at full capacity without any tasks assigned for actual execution. A Software Defined Network (SDN) is a network architecture where the control plane is an independent entity from the data plane, yielding to a higher controllability and flexibility over the network. Through the utilization of SDN architecture, a highly functional energy aware network may be established. In this paper, we propose a heuristic algorithm that monitors the current status of an SDN network (in addition to all ingoing and outgoing traffic), in order to dynamically and efficiently allocate network resources by ensuring that only the necessary network devices are active and by turning the idle ones off. The results show that the proposed algorithm reduces energy consumption of the network compared to existing solutions.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fuzzy-based fast routing algorithm with guaranteed latency-throughput over software defined networks;Journal of King Saud University - Computer and Information Sciences;2022-11

2. Rural electrification using maintenance free hybrid generation;THE 2ND UNIVERSITAS LAMPUNG INTERNATIONAL CONFERENCE ON SCIENCE, TECHNOLOGY, AND ENVIRONMENT (ULICoSTE) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3