Influence of Chirped DBR Reflector on the Absorption Efficiency of Multi-nanolayer Photovoltaic Structures: Wavelength-scale Analysis by the Method of Single Expression

Author:

Baghdasaryan Hovik,Knyazyan Tamara,Hovhannisyan Tamara,Mardoyan Gurgen,Marciniak Marian1ORCID,Benson Trevor

Affiliation:

1. National Institute of Telecommunications - State Research Institute: Warszawa, PL

Abstract

An electromagnetic wavelength-scale analysis of the optical characteristics of multi-nanolayer photovoltaic (PV) structures: without an antireflection coating, with an antireflection coating on the top of the structure, and with both the antireflection coating on the top and a broadband non-periodic (chirped) distributed Bragg reflector (DBR) on the bottom of the structure is performed. All the PV structures studied are based on a Si p-i-n type absorber supported by a metallic layer (Cu) and SiO2 substrate. The top-to-bottom electromagnetic analysis is performed numerically by the method of single expression (MSE). Absorbing and reflecting characteristics of the multi-nanolayer PV structures are obtained. The influence of the thicknesses and permittivities of the layers of the PV structures on the absorbing characteristics of the structures is analyzed to reveal favourable configurations for enhancement of their absorption efficiency. The localizations of the electric component of the optical field and the power flow distribution within all the PV structures considered are obtained to confirm an enhancement of the absorption efficiency in the favorable configuration. The results of the electromagnetic wavelength-scale analysis undertaken will have scientific and practical importance for optimizing the operation of thin-filmmulti-nanolayer PV structures incorporating a chirped DBR reflector with regards to enhancing their efficiency.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3