Adaptive Rider Feedback Artificial Tree Optimization-Based Deep Neuro-Fuzzy Network for Classification of Sentiment Grade

Author:

Jasti SireeshaORCID,Raj Kumar G.V.S.

Abstract

Sentiment analysis is an efficient technique for expressing users’ opinions (neutral, negative or positive) regarding specific services or products. One of the important benefits of analyzing sentiment is in appraising the comments that users provide or service providers or services. In this work, a solution known as adaptive rider feedback artificial tree optimization-based deep neuro-fuzzy network (RFATO-based DNFN) is implemented for efficient sentiment grade classification. Here, the input is pre-processed by employing the process of stemming and stop word removal. Then, important factors, e.g. SentiWordNet-based features, such as the mean value, variance, as well as kurtosis, spam word-based features, term frequency-inverse document frequency (TF-IDF) features and emoticon-based features, are extracted. In addition, angular similarity and the decision tree model are employed for grouping the reviewed data into specific sets. Next, the deep neuro-fuzzy network (DNFN) classifier is used to classify the sentiment grade. The proposed adaptive rider feedback artificial tree optimization (A-RFATO) approach is utilized for the training of DNFN. The A-RFATO technique is a combination of the feedback artificial tree (FAT) approach and the rider optimization algorithm (ROA) with an adaptive concept. The effectiveness of the proposed A-RFATO-based DNFN model is evaluated based on such metrics as sensitivity, accuracy, specificity, and precision. The sentiment grade classification method developed achieves better sensitivity, accuracy, specificity, and precision rates when compared with existing approaches based on Large Movie Review Dataset, Datafiniti Product Database, and Amazon reviews.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3