Infrastructure and Energy Conservation in Big Data Computing: A Survey

Author:

Niewiadomska-Szynkiewicz Ewa1ORCID,Karpowicz Michał P.1ORCID

Affiliation:

1. NASK National Research Institute: Warsaw, PL

Abstract

Progress in life, physical sciences and technology depends on efficient data-mining and modern computing technologies. The rapid growth of data-intensive domains requires a continuous development of new solutions for network infrastructure, servers and storage in order to address Big Datarelated problems. Development of software frameworks, include smart calculation, communication management, data decomposition and allocation algorithms is clearly one of the major technological challenges we are faced with. Reduction in energy consumption is another challenge arising in connection with the development of efficient HPC infrastructures. This paper addresses the vital problem of energy-efficient high performance distributed and parallel computing. An overview of recent technologies for Big Data processing is presented. The attention is focused on the most popular middleware and software platforms. Various energy-saving approaches are presented and discussed as well.

Funder

Narodowe Centrum Nauki

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference89 articles.

1. [1] P. D. Healy, T. Lynn, E. Barrett, and J. P. Morrison, "Single system image: A survey", J. Parallel Distrib. Comput., vol. 90-91, pp. 35-51, 2016 (10.1016/j.jpdc.2016.01.004).

2. [2] A. Oussous, F. Z. Benjelloun, A. A. Lahcen, and S. Belfkih, "Big data technologies: A survey", J. of King Saud Univer. - Comp. and Inform. Sci., vol. 30, no. 4, pp. 431-448, 2018 (doi: 10.1016/j.jksuci.2017.06.001).

3. [3] ETP4HPC Strategic Research Agenda achieving HPC leadership in Europe [Online]. Available: www.etp4hpc.eu

4. [4] IEEE 802.3az-2010 - IEEE standard for information technology [Online]. Available: https://standards.ieee.org/standard/802 3az-2010.html

5. [5] Mosix home page [Online]. Available: www.mosix.org

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3