Diagnostic Assessment of Deep Learning Algorithms for Frozen Tissue Section Analysis in Women with Breast Cancer

Author:

Kim Young-Gon,Song In Hye,Cho Seung Yeon,Kim Sungchul,Kim Milim,Ahn Soomin,Lee Hyunna,Yang Dong Hyun,Kim Namkug,Kim Sungwan,Kim Taewoo,Kim Daeyoung,Choi Jonghyeon,Lee Ki-Sun,Ma Minuk,Jo Minki,Park So Yeon,Gong Gyungyub

Abstract

Purpose Assessing the metastasis status of the sentinel lymph nodes (SLNs) for hematoxylin and eosin–stained frozen tissue sections by pathologists is an essential but tedious and time-consuming task that contributes to accurate breast cancer staging. This study aimed to review a challenge competition (HeLP 2019) for the development of automated solutions for classifying the metastasis status of breast cancer patients.Materials and Methods A total of 524 digital slides were obtained from frozen SLN sections: 297 (56.7%) from Asan Medical Center (AMC) and 227 (43.4%) from Seoul National University Bundang Hospital (SNUBH), South Korea. The slides were divided into training, development, and validation sets, where the development set comprised slides from both institutions and training and validation set included slides from only AMC and SNUBH, respectively. The algorithms were assessed for area under the receiver operating characteristic curve (AUC) and measurement of the longest metastatic tumor diameter. The final total scores were calculated as the mean of the two metrics, and the three teams with AUC values greater than 0.500 were selected for review and analysis in this study.Results The top three teams showed AUC values of 0.891, 0.809, and 0.736 and major axis prediction scores of 0.525, 0.459, and 0.387 for the validation set. The major factor that lowered the diagnostic accuracy was micro-metastasis.Conclusion In this challenge competition, accurate deep learning algorithms were developed that can be helpful for making a diagnosis on intraoperative SLN biopsy. The clinical utility of this approach was evaluated by including an external validation set from SNUBH.

Funder

Ministry of Health and Welfare

Korea Health Industry Development Institute

Publisher

Korean Cancer Association

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3