Author:
Kim Moonsik,Lee Changseon,Hong Juyeon,Kim Juhee,Jeong Ji Yun,Park Nora Jee-Young,Kim Ji-Eun,Park Ji Young
Abstract
Purpose Targeted next-generation sequencing (NGS) is widely used for simultaneously detecting clinically informative genetic alterations in a single assay. Its application in clinical settings requires the validation of NGS gene panels. In this study, we aimed to validate a targeted hybridization capture-based DNA panel (ONCOaccuPanel) using the Illumina MiSeq sequencing platform. The panel allows the simultaneous detection of single-nucleotide variants (SNVs), insertions, deletions, and copy number changes of 323 genes and fusions of 17 genes in solid tumors.Materials and Methods We used 16 formalin-fixed paraffin-embedded (FFPE) tumor samples with previously known genetic mutations and one reference material (HD827) for validation. Moreover, we sequenced an additional 117 FFPE tumor samples to demonstrate the clinical utility of this panel.Results Validation revealed a 100% positive percentage agreement and positive predictive value for the detection of SNVs, insertions, deletions, copy number changes, fusion genes, and microsatellite instability–high types. We observed high levels of reproducibility and repeatability (R2 correlation coefficients=0.96-0.98). In the limit of detection assessment, we identified all clinically relevant genes with allele frequencies > 3%. Furthermore, the clinical application of ONCOaccuPanel using 117 FFPE samples demonstrated robust detection of oncogenic alterations. Oncogenic alterations and targetable genetic alterations were detected in 98.2% and 27.4% cases, respectively.Conclusion ONCOaccuPanel demonstrated high analytical sensitivity, reproducibility, and repeatability and is feasible for the detection of clinically relevant mutations in clinical settings.
Funder
Kyungpook National University Hospital
Publisher
Korean Cancer Association
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献