High glucose microenvironment and human mesenchymal stem cell behavior

Author:

Mateen Muhammad Abdul,Alaagib Nouralsalhin,Haider Khawaja Husnain

Abstract

High glucose (HG) culture conditions in vitro and persistent exposure to hyperglycemia in diabetes patients are detrimental to stem cells, analogous to any other cell type in our body. It interferes with diverse signaling pathways, i.e. mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt signaling, to impact physiological cellular functions, leading to low cell survival and higher cell apoptosis rates. While elucidating the underlying mechanism responsible for the apoptosis of adipose tissue-derived mesenchymal stem cells (MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective mitochondrial membrane potential (MtMP) that lowers ATP production. This organelle-level dysfunction energy-starves the cells and increases oxidative stress and ultrastructural abnormalities. Disruption of the mitochondrial electron transport chain produces an altered mitochondrial NAD+/NADH redox state as evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced cell survival in HG. Some previous studies have also reported altered mitochondrial membrane polarity (causing hyperpolarization) and reduced mitochondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile microenvironment created by HG exposure creates structural and functional changes in the mitochondria, altering their bioenergetics and reducing their capacity to produce ATP. These are significant data, as MSCs are extensively studied for tissue regeneration and restoring their normal functioning in cell-based therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used in clinical settings for cell-based therapy due to concerns of their poor survival rates and increased rates of post engraftment proliferation. As hyperglycemia alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an excellent target for future research to restore the normal functioning of MSCs in hyperglycemic patients.

Publisher

Baishideng Publishing Group Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3