Characterization of the Strength of a Natural Sand and Artificial Sand Core Manufactured with Inorganic Binder
-
Published:2021-04-05
Issue:4
Volume:59
Page:273-280
-
ISSN:1738-8228
-
Container-title:Korean Journal of Metals and Materials
-
language:en
-
Short-container-title:Korean J. Met. Mater.
Author:
Bae Min A,Kim Pan Seong,Kim Kyeong Ho,Lee Man Sig,Baek Jae Ho
Abstract
Natural sand and organic binders are commonly used in casting processes, but these ingredients produce environmental problems with dust and harmful TVOC(Total Volatile Organic Carbon) gases. Research on the introduction of artificial sand and inorganic binders to solve these environmental problems is being actively conducted mainly in the casting industry. Artificial sand has superior durability and a spherical shape compared to natural sand, and above all, it does not generate dust. In addition, inorganic binders have the advantage that no harmful gas is generated during casting and the used sand can be recycled. This study confirmed whether inorganic binders can be applied when replacing natural sand with artificial sand. First, eco-friendly inorganic binders that do not produce harmful gas were synthesized. Then characteristic analyses were carried out with artificial sand and natural sand. Physical and chemical properties were compared using X-Ray Fluorescence (XRF), Powder Flow Test (PFT) and particle size distribution analyses. The general strength and absorption (absolute humidity 29.9 g/cm<sup>3</sup>) strength of the sample core was measured using each sand (artificial sand, natural sand) and inorganic binder. Also, X-ray Photoelectron Spectroscope (XPS) analysis confirmed the combination structure. As a result, it was confirmed that artificial sand exhibited mold characteristics with similar strength even with lower inorganic binder content than natural sand.
Funder
Ministry of Trade, Industry and Energy
Korea Institute of Industrial Technology
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献