Hydrogen-Based Reduction Ironmaking Process and Conversion Technology

Author:

Yi Sang-Ho,Lee Woon-Jae,Lee Young-Seok,Kim Wan-Ho

Abstract

This study analyzed the current state of technical development of the BF-based process, to determine ways to reduce carbon consumption. The technical features of the hydrogen reduction ironmaking process were also examined as a decarbonized ironmaking method, and related issues that should be considered when converting to hydrogen reduction are discussed. The coal rate consumed by the reduction reaction in the coal-based BF process should be less than 50%. The heat requirement for indirect reduction in hydrogen reduction is higher than that of CO reduction, since hydrogen reduction is endothermic. The BF-based integrated steel mill is an energy independent process, since coal is used for the reduction of iron ore and melting, and the by-product gases evolved from the BF process are utilized for reheating the furnace, the power plant, and steam production. For hydrogen reduction, only green hydrogen should be used for the reduction of iron ore, and the power required to melt the iron and for the downstream rolling process will have to be provided from the external grid. Therefore, to convert to hydrogen reduction, green power should be supplied from an external infrastructure system of the steel industry. It will be necessary to discuss an optimized pathway for the step-by-step replacement of current coal-based facilities, and to reach agreement on the socio-economic industrial transition to hydrogen reduction steel.

Funder

Ministry of Trade, Industry and Energy

Korea Energy Technology Evaluation and Planning

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference38 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3