Influence of Cu Doping on Bipolar Conduction Suppression for p-type Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3 Alloys

Author:

Cho Hyun-Jun,Kim Hyun-Sik,Sohn Woong-hee,Kim Sang-il

Abstract

In this study, we report how Cu doping can modify the thermoelectric performance of p-type Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3 thermoelectric alloys, including their electronic and thermal transport properties. For electronic transport, the power factors of both Bi0.5Sb1.5Te3 and Bi0.4Sb1.6Te3 compositions were increased by Cu doping. The origins of the enhanced power factors were examined using a single parabolic band model, by estimating the changes in deformation potential, effective mass, nondegenerate mobility and weighted mobility in both valence and conduction bands. The weighted mobility of the valence band was increased by Cu doping and increased Sb ratio, while the weighted mobility of the conduction band decreased, suggesting bipolar conduction was greatly reduced. For thermal transport, Cu0.0075Bi0.4Sb1.6Te3 and Bi0.4Sb1.6Te3 had a lower lattice thermal conductivity than Cu0.0075Bi0.5Sb1.5Te3 and Bi0.5Sb1.5Te3, respectively, due to an increase in Umklapp scattering. In addition, Cu doping suppressed bipolar thermal conductivity at high temperatures, by increasing hole concentration. It was also confirmed that Cu-doped samples had a lower lattice thermal conductivity than undoped samples due to additional point defect scattering. As a result, the thermoelectric figure of merit (zT) was greatly enhanced by 0.0075 mol of Cu doping, from 0.80 to 1.11 in Bi0.5Sb1.5Te3, while the zT is increased from 1.0 to 1.05 for Bi0.4Sb1.6Te3.

Funder

Samsung Research Funding and Incubation Center

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3