Lithium Recovery from NCM Lithium Ion Battery by Carbonation Roasting Followed by Water Leaching

Author:

Lee Dae-Hyeon,Lee So-Yeon,Lee So-Yeong,Sohn Ho-Sang

Abstract

Lithium is a representative rare metal and ranks 32nd in abundance among elements in the earth’s crust. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Today, lithium is an indispensable metal in our daily lives. It is important to recycle lithium from used lithium-ion batteries to prepare for lithium shortages and protect lithium resources. The active cathode material of a lithium ion battery contains other valuable metals including Ni, Co, and Mn. In this study, the effect of carbonation temperature on Li recovery from NCM (LiNixCoyMnzO2) powder as Li2CO3 was investigated. First, a carbonation roasting was performed to convert the Li in the NCM powder into Li2CO3 at various temperature using a thermo-gravimetric analyzer. The roasted cinder leached into the water to dissolve the Li2CO3. The results showed that in Ar gas atmosphere the NCM phase was decomposed into Li2O and Li1-xM1+xO2 phases and the weight decreased by 4.7%, but in a CO2 atmosphere Li2CO3 was formed, resulting in a 12.1% increase in weight. In the isothermal experiment, the weight and carbon concentration of cinder increased with temperature, and the Li ratio in the NCM gradually decreased. The NCM powder was able to react with CO2 above 853 K, while some nickel, cobalt and manganese were regenerated into different Li1-xM1+xO2 crystalline phases. The maximum Li recovery rate of 76% wsa achieved for 2 h carbonation roasting at 1073 K followed by water leaching, filtering and an evaporative crystallization process.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3