Localized Corrosion Behavior of UNS N07718 in a Solution Simulating a Diluted-sour Environment

Author:

Lee Ye-Jin,Lee Jun-Seob,Kwon Soon il,Shin Jungho,Cho Young Tae,Kim Seok,Lee Je-Hyun

Abstract

The localized corrosion behavior of precipitation-hardened UNS N07718 was investigated by immersion tests in 6 wt% FeCl3 + 1.0 wt% HCl and the use of electrochemical techniques in a simulating solution of a diluted-sour environment of 25 wt% NaCl + 0.5 wt% CH3COOH. The Ti carbides and Nb-Mo carbides with 1-10 µm size were distributed in the alloy. After immersion at a solution temperature higher than 45oC, localized corrosion with a depth of over 25 µm was identified, and the critical pitting temperature was determined to be 45oC. Potentiodynamic polarization showed that the surface of the UNS N07718 was immediately passivated in the experimental solution. The passivity-maintaining current density was gradually increased with increasing solution temperature, and finally, localized corrosion was initiated or propagated at 0.5 VSSE in 80oC. The localized corrosion was initiated or propagated at the interface between the Ti and Nb-Mo carbides and the alloy substrate. Scanning Kelvin probe microscopic images revealed that the contact-potential difference values were in the order of Ti carbide > Nb-Mo carbide > alloy substrate, indicating that the carbides and alloy substrate act as a cathode and an anode, respectively, forming a micro-galvanic couple. Therefore, it is concluded that localized corrosion is initiated at the interface between the carbides and substrates in UNS N07718.

Funder

Ministry of Trade, Industry and Energy

Korea Energy Technology Evaluation and Planning

Ministry of Education

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3