Effects of Charge Compensation on the Thermoelectric Properties of (La1-zCez)0.8Fe4-xCoxSb12 Skutterudites

Author:

Jang Kyung-Wook,Cha Ye-Eun,Choi Deok-Yeong,Kim Sunuk,Seo Won-Seon,Lee Kyu Hyoung,Kim Il-Ho

Abstract

La/Ce-partially double-filled and Co-charge-compensated (La1−zCez)0.8Fe4−xCoxSb12 skutterudites were synthesized, and their thermoelectric properties were studied by varying the filling ratio and charge compensation. X-ray diffraction analysis revealed that the matrix phase was skutterudite and a secondary phase was determined to the marcasite FeSb2. However, the formation of marcasite could be inhibited by increasing the Co content. Rare-earth antimonides, including LaSb2 and CeSb2, which were formed in fully filled La1−zCezFe4−xCoxSb12, were not found after La/Ce partial filling. La/Ce filling and Co substitution were confirmed by the decrease in lattice constants, from 0.9137 to 0.9099 nm, with increasing Ce and Co contents. Electrical conductivity showed negative temperature dependence, indicating metallic or degenerate semiconductor characteristics. Intrinsic conduction resulted in the maximum Seebeck coefficient at temperatures between 723 and 823 K. As the Co-substitution and Ce-filling contents increased, the Seebeck coefficient increased, while electrical and thermal conductivities decreased. This was considered to be due to difference in the valences of La<sup>3+</sup> and Ce<sup>3+/4+</sup> and the increase in carrier concentration caused by Co charge compensation. However, because they had similar atomic masses and ionic radii, the effects of the La/Ce filling ratio were not significant. Instead, Co charge compensation had the dominant effect on thermoelectric properties. The maximum Seebeck coefficient of 165.4 µVK<sup>-1</sup> was obtained for (La0.25Ce0.75)0.8Fe3CoSb12 at 823 K, and the highest electrical conductivity of 2.27 × 10<sup>5</sup> S m<sup>-1</sup> was achieved for (La0.75Ce0.25)0.8Fe4Sb12. (La0.25Ce0.75)0.8Fe3CoSb12 exhibited the lowest thermal conductivity of 2.15 W m<sup>-1</sup>K<sup>-1</sup> at 523 K and (La0.75Ce0.25)0.8Fe3.5Co0.5Sb12 showed the highest power factor of 2.53 mW m<sup>-1</sup> K<sup>-2</sup> at 723 K. The maximum dimensionless figure of merit, ZTmax = 0.71, was achieved at 723 K for (La0.75Ce0.25)0.8Fe3CoSb12.

Funder

Hanseo University

National Research Foundation of Korea

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3