Microstructural Analysis of Solder Bump Fabricated by Sn Electroplating on a PCB Substrate

Author:

Kim Sang-Hyeok,Kim Seong-Jin,Shin Han-Kyun,Park Hyun,Heo Cheol-Ho,Moon Seongjae,Lee Hyo-Jong

Abstract

To manufacture finer solder bumps, the SR and DFR patterns were filled using a Sn electroplating process instead of the microball process currently used in BGA technology, and the solder bump shape was fabricated through a reflow process. The microstructure of the solder bump was investigated by EBSD and TEM measurements. The EBSD results showed that the grain size of the Sn structure became finer after the reflow treatment and a scallop shape of Cu6Sn5 was formed on the Cu UBM. However, the Cu3Sn phase was difficult to measure in the EBSD measurement. The Cu3Sn compound could be investigated with TEM analysis. The Cu3Sn phase also existed in the Sn region, with a size of several tens of nanometers, due to the eutectic reaction. The volume fraction of the Cu6Sn5 phase in the Sn region could be calculated from the TEM image, and the concentration of copper dissolved in the liquid tin during the reflow process could be estimated from the volume fraction. It was possible to observe the Cu3Sn and Cu6Sn5 lattice images through high resolution TEM analysis, but it was difficult to observe the lattice coherency between the two phases because both were polycrystalline. Based on the results of this study, it is expected that solder bumps with a diameter of less than 100 µm can be robustly manufactured through the Sn electroplating process.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3