Method for Predicting Thermoelectric Module Efficiency Using MATLAB/Simulink

Author:

Lee Nayoung,Ye Sungwook,Ur Rahman Jamil,Tak Jang-Yeul,Cho Jung Young,Seo Won Seon,Shin Weon Ho,Commerell Walter,Nam Woo Hyun,Roh Jong Wook

Abstract

Development new high-performance thermoelectric materials for more efficient power generation systems and eco-friendly refrigerating systems has been challenging. Over the past few decades, thermoelectric studies have been focused on increasing the thermoelectric properties of materials. However, for conventional applications, developing of thermoelectric devices or modules with lower cost and simpler fabrication processes is also important. Simulation models that can predict the thermoelectric efficiency of modules using the thermoelectric properties of materials are needed for this purpose. In this study, we developed a simple model for calculating the efficiency of thermoelectric modules using MATLAB/Simulink. In this model, the temperature difference between the hot source and heat sink was fixed to ensure the precise comparisons of thermoelectric efficiency. The electric resistivity and Seebeck coefficient of thermoelectric materials was used in order to predict the efficiency of the thermoelectric modules. Then, the efficiency of the thermoelectric modules was verified using measured values which had been reported in prior experimental works. In this study, the simulated values were higher than the real thermoelectric effiency values. To address this, the simulations should consider the thermal resistance or electric contact resistance between the thermoelectric materials and electrodes.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Ministry of Science and ICT

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Germanium-telluride-based thermoelectrics;Nature Reviews Electrical Engineering;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3