Author:
Ahiale Godwin Kwame,Kye In-Seok,Kwon Young Sam,Oh Yong-Jun
Abstract
W-containing Ti-6Al-4V alloys (W=0, 1, and 5 wt%) were fabricated by the powder injection molding process, and the corresponding effects of tungsten content on the mechanical properties and microstructure of the alloys were investigated. The alloy powders were sintered at 1200 °C and then hot-isostatically-pressed at 900 °C. The fabricated alloys were subjected to microstructural and chemical analyses, and tensile and nano-indentation tests. The yield strength and tensile strength proportionally increased as the W content was increased from 0 wt% to 5 wt%. Ductility was not affected by the addition of up to 5 wt% W due to its complete dissolution in the matrix. Higher W addition induced finer α/β lamellar microstructures and increased the β to α phase ratio. Moreover, the added W dissolved preferentially in the β phase by solid solution hardening, increasing the hardness of the β phase, which originally was significantly softer than the α phase. For the alloys containing up to 5 wt% W, the strengthening without ductility loss was attributed to the finer α/β lamellae and the volume increase in the β phase hardened by W. These results suggest that adding W to Ti-6Al-4V alloy is a promising method for developing Ti alloys with both high strength and toughness.
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献