Effect of Grain Size on High Temperature Oxidation Behavior of IN792 Superalloy

Author:

Bang Ji-Ye,Lee Dong-Hyun,Lee Soo Yeol

Abstract

It is known that Ni-based superalloys possess superior mechanical properties in high-temperature and high-pressure environments. One of the drawbacks of these alloys is their tendency to oxidize at high temperatures. Improving their oxidation properties and obtaining a fundamental understanding of the underlying mechanism of their oxidation behavior are critical for high temperature applications. In this work, we manufactured IN792 Ni-based alloys with two different grain sizes to examine the effect of grain size on oxidation behavior at 850<sup>o</sup>C and 980<sup>o</sup>C. The oxidation rate became faster as the grain size became finer, and at 850<sup>o</sup>C, the oxide layer was composed of external oxides (TiO<sub>2</sub>/NiO, Ni-Co-Cr-O, Cr<sub>2</sub>O<sub>3</sub>), internal oxides (TiTaO<sub>4</sub>, non-oxidized layer, Al<sub>2</sub>O<sub>3</sub>) and a precipitate-free zone (PFZ). At 980<sup>o</sup>C, this structure became unstable due to the diffusion of Ni, and in particular, a lot of exfoliation of external oxides occurred in the coarse grain. Regardless of the structure of the oxide layers, the thickness of the PFZ increased significantly in the fine grains with a low  fraction. Compared to the hardness of external Cr-rich oxides of ~500 HV, the hardnesses of the internal oxides consisting of Al-rich and Ni-Al-O were approximately 1000 HV and 1500 HV, respectively. Therefore, the most vulnerable position is expected to be the interfacial boundary between the external oxide and internal oxide, and this resulted in the ease of exfoliation of the external oxide in this location, by exposing the Ni-Al-O oxide to the surface in the coarse grain at 980<sup>o</sup>C. The current work can be a useful method in the design of Ni-based superalloys by controlling the grain size of the components.

Funder

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3