Optimization of Ion Beam-Assisted Deposition Process for Y<sub>2</sub>O<sub>3</sub> Film to Enhance Plasma Resistance

Author:

Oh Choluk,Kwon Ojun,Bae Younghun,Shin Hyejin,Kwon Young Min,Cho Byungjin

Abstract

A ceramic-based plasma etcher window (Lid) requires robust resistance to plasma, especially when exposed to harsh fluorine-based plasma conditions. In this study, a Y<sub>2</sub>O<sub>4</sub> film was deposited using e-beam evaporation with ion beam-assisted deposition (IBAD), and the physical properties of the IBAD-based Y<sub>2</sub>O<sub>4</sub> coating film were thoroughly examined to enhance the mechanical and chemical resistance of the ceramic part, including the Y<sub>2</sub>O<sub>4</sub> film, against etching plasma. The hardness and surface morphology of the IBADbased Y<sub>2</sub>O<sub>4</sub> could be precisely controlled by various deposition processing parameters, such as beam voltage, beam current, and Ar/O2 gas ratio. Following the IBAD deposition of the Y<sub>2</sub>O<sub>4</sub> film, a plasma etching process (Ar/CF<sub>4</sub> mixture gases with 150 W RF power for 60 minutes) was applied to evaluate the plasma resistance of the deposited Y<sub>2</sub>O<sub>4</sub> coating film. The surface morphology characteristics of the Y<sub>2</sub>O<sub>4</sub> films were compared using atomic force microscopy, and their grain size was studied through scanning electron microscopy image analysis. Furthermore, a nanoindenter was used to determine the hardness of the Y<sub>2</sub>O<sub>4</sub> film. These results suggest that optimizing the IBAD coating process requires an in-depth study that fully considers the correlation between deposition processing parameters and physical properties. This optimization can be instrumental for enhancing the durability of the ceramic part.

Funder

SK Hynix

Chungbuk National University

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

Korea Planning and Evaluation Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3