Measurement of Intrinsic Hardness of Deposited Chromium Thin Films by Nanoindentation Method and Influencing Factors

Author:

Kang Young-Joon,Baeg Ju-Hwan,Park Hyun,Cho Young-Rae

Abstract

Materials with very small dimensions exhibit different physical and mechanical properties compared to their bulk counterparts. This becomes significantly important for the thin films that are widely used as components in micro-electronics and functional materials. In this study, a chromium (Cr) thin film was deposited on a silicon (Si) wafer by DC-magnetron sputtering. The intrinsic hardness of the Cr thin film on Si-wafer was evaluated by the nanoindentation method. We especially investigated ways of measuring the intrinsic hardness of the Cr thin film, and influential factors including the substrate effect and surface roughness effect. To further characterize the intrinsic hardness of the Cr thin film on Si-wafer, we used Xray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Two additional methods, the Meyer-plot and a profile for hardness versus indentation depth, were also employed. As a result of these two methods, we found that the profile for hardness versus indentation depth was valuable for evaluating the intrinsic hardness of Cr thin film on a Si-wafer substrate. The measured intrinsic hardness of the Cr thin film and Si wafer were about 900 Hv and 1143 Hv, respectively. The profile for hardness versus indentation depth can be widely used to evaluate the intrinsic hardness of metallic thin films on substrates.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Korea Energy Technology Evaluation and Planning

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3