Optimization of Holographic Imprinting Process for Metallic Glass using Thermoplastic Forming

Author:

Ryu Wook Ha,Ryu Chae Woo,Kim Kyung Jun,Kwak Min Kyung,Park Eun Soo

Abstract

The thermoplastic forming (TPF) process of metallic glass (MG) is a unique and powerful method that cannot be performed using conventional crystalline alloys. Because the mechanical and thermal properties of MGs are more favorable with smaller sample sizes, TPF is particularly useful for microscale and nanoscale part molding and micro-patterning. One of the promising commercial MG applications that can take full advantage of these characteristics is hologram patterning. Holograms can be used to identify unique brands, using characteristics with patterns that are difficult to replicate. Their excellent aesthetic qualities can also greatly contribute to increased product value. In this study, we developed and performed a TPF process for actual holographic imprinting with Mg-based MGs, and further investigated the TPF processing window, covering a wide range of temperature and process time conditions through thermal analysis, with ultra-fast heating rates ranging from 100 to 25000 K/s using Flash-DSC. The results of this study serve as a practical guide for identifying the full range of TPF processing windows including conventional and ultrafast heating conditions for micro-scale and nanoscale molding of various MGs. Moreover, a methodology is proposed to identify the general TPF processing window (<i>η</i><108Pa· s) and the ideal TPF processing window (<i>η</i><104Pa· s) by estimating the viscosity (<i>η</i>) of the supercooled liquid. Accordingly, this study is expected to be utilized to optimize the TPF process of MGs and promote the commercialization of related industries.

Funder

Samsung Research Funding Center

Institute of Engineering Research, Seoul National University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3