Electrical and Mechanical Properties of Polymer Composite through the Use of Single-Walled Carbon Nanotube and Multi-Walled Carbon Nanotube

Author:

Kang Byung-Ho,Hur Oh-Nyoung,Hong Soon-Kook,Park Sung-Hoon

Abstract

To manufacture composites with required properties, it is extremely important to select an appropriate filler. Carbon-based nano materials such as carbon black, graphene and carbon nanotube (CNT) have been extensively investigated as reinforcing and conducting fillers. Because of their high aspect ratio coupled with superior physical properties, 1-dimensional CNTs are ideal as filler materials to impart electrical conductivity to insulating polymers, while enhancing mechanical strength. In this study, we investigated the piezo-resistive and mechanical properties of composites consisting of two types of CNT classified as multi-walled CNT (MWNT) or single-walled CNT (SWNT) depending on the number of walls. Since MWNT and SWNT have different physical properties such as specific surface area and aspect ratio, this can affect the composite’s performance. To more effectively evaluate the effect of MWNTs and SWNTs in composites, we used thermoplastic polyurethane (TPU) as a matrix, which is an insulating stretchable elastomer. Morphological and mechanical/electrical characterizations were conducted to determine differences in the MWNT and SWNT composites. In addition, we conducted dynamic strain sensing tests on each type of CNT composites to compare the sensitivity as a strain sensor. Differences in piezo-resistive behaviors were attributed to the loss of electrical contact points during stretching. These results can serve as a useful design guideline for the wider use of CNT composites.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3