Fabricating and Probing Forsterite Li-ion Battery Anode Electrodes

Author:

Kim Dong-Ju,Park Byoung-Nam

Abstract

In an effort to minimize irreversible capacity loss and volume expansion, research on Si nanocomposite materials with a SiO<sub>x</sub>/Mg<sub>2</sub>SiO<sub>4</sub>/SiO<sub>x</sub> structure through a magnesiothermic reduction process (MTR) has attracted much attention from researchers. Mg<sub>2</sub>SiO<sub>4</sub>(forsterite) has been shown to improve the initial coulombic efficiency (ICE) by minimizing the irreversible capacity loss due to pulverization and highvolume expansion of the Si-based anode complexes. In this study, forsterite was synthesized as the main phase by Mg vapor control in the MTR process. We used an electrophoretic deposition system to investigate the intrinsic electrochemical properties of forsterite, which served as a buffer for the improvement of ICE, associated with the lithiation/delithiation process. Importantly, a stable specific capacity of up to 200 mAh/g was achieved during the charging/discharging process, demonstrating its potential use as an anode electrode. We also found that no significant capacity was found by alloying with Si. In other words, there is a lithium storage mechanism unique to forsterite which is not related to the Si alloying reaction in the storage mechanism. The results presented here are the first demonstration of a forsterite lithium-ion battery; forsterite has only been considered as a buffer layer of the Si/SiO composite structure. Furthermore, the finding is of crucial importance as it provides the basis for various approaches to develop reversible and high power li-ion battery anodes by synthesizing the Si composite through MTR.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3