Fabrication and Electromagnetic wave absorption Properties of Co-Cu-substituted Ni-Zn Spinel Ferrite-epoxy Composites

Author:

Yoo Ji-Eun,Kang Young-Min

Abstract

Spinel ferrites (Ni0.5Zn0.5)1-<i>x-y</i>Co<i>x</i>Cu<i>y</i>Fe2O4, (<i>x</i> = 0 and <i>y</i> = 0, <i>x</i> = 0.2 and <i>y</i> = 0, <i>x</i> = 0.1 and <i>y</i> = 0.1, <i>x</i> = 0 and <i>y</i> = 0.2) were prepared by sol-gel method and post-annealed at 1100 <sup>o</sup>C. The grain growth of the sample is very sensitive to the Cu substitution <i>y</i>. The average grain size of the non-doped sample (<i>x</i> = 0, <i>y</i> = 0) was ~400 nm and it increased to ~3 μm at the sample with <i>x</i> = 0 and <i>y</i> = 0.2. The real and imaginary parts of permittivities (<i>ε', ε"</i>) and permeabilities (<i>μ', μ"</i>) were measured on the spinel ferrite powder-epoxy (10 wt%) composite samples by a network vector analyzer in the frequency range of 0.1 ≤ <i>f</i> ≤ 15 GHz. The <i>μ'</i> and <i>μ"</i> depend on Co substitution <i>x</i> and the <i>ε'</i> is sensitive to Cu doping <i>y</i>. Reflection loss (RL), which implies electromagnetic (EM) wave absorption properties, were analyzed based on the complex permeability, permittivity spectra. In the RL map plotted as functions of sample thickness (<i>d</i>) and frequency (<i>f</i>), the intensive EM absorbing area (RL < -30 dB) shifted to a high frequency region with increasing Co substitution. This can be attributed to a permeability spectra shift, due to the increase in ferromagnetic resonance frequency produced by the Co substitution. The samples with <i>x</i> = 0.1 and <i>y</i> = 0.1, <i>x</i> = 0.2 and <i>y</i> = 0 also exhibited a very broad-ranged EM wave absorbing performance with a <i>d</i> < 3 mm, indicated by RL < -10 dB being satisfied in the frequency range 7~14 GHz.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3