Control of Self-Assembly and Elemental Mixing of AuNi Bimetallic Nanoparticles via Solid-State and Liquid-State Dewetting of Metal Thin Films
-
Published:2024-01-05
Issue:1
Volume:62
Page:51-56
-
ISSN:1738-8228
-
Container-title:Korean Journal of Metals and Materials
-
language:en
-
Short-container-title:Korean J. Met. Mater.
Author:
Moon Yoon Hwan,Park Jong Geun,Oh Yong Jun
Abstract
Immiscible Au-Ni alloy thin films undergo phase separation and dewetting because of thermodynamic and morphological instability at elevated temperatures below the miscibility gap. We report the formation and assembly of bimetallic nanoparticles (BNPs) on topographic Si templates. An ordered array of inverted pyramidal pits were produced via solid-state and liquid-state dewetting of a 12-nm-thick Au-Ni thin film by respectively using thermal annealing and laser irradiation. Upon direct thermal annealing at 600 and 800 <sup>o</sup>C, the thin film on the templates self-assembled into an ordered array of BNPs composed of Au-rich and Ni-rich sub-clusters in pits. But the relative proportions of the two sub-clusters varied with annealing temperature due to the additional formation of smaller Ni-rich NPs that were scattered around the BNPs. Laser irradiation of the film, in contrast, formed an ordered array of fully mixed alloy NPs on the template and left no other residues on the surface. Subsequent thermal annealing induced the elements within the NPs to segregate, resulting in Au-rich and Ni-rich sub-clusters. In brief, the combination of solid-state and liquidstate dewetting processes on a topographic template not only enabled the 2-dimesional self-assembly of BNPs but also allowed control of the mixing of alloying elements within the BNPs. These results offer insights into the tailored fabrication of BNPs, which have potential applications in bio-functional catalysts, and plasmonic and chemical sensors.
Funder
Hanbat National University
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials