Analysis of Tensile Deformation Behavior of Rolled AZ31 Mg Alloy Subjected to Precompression and Subsequent Annealing Using DIC

Author:

Lee Gyo Myeong,Kim Jung Eun,Park Sung Hyuk

Abstract

This study investigates the effects of precompression and subsequent annealing on the tensile deformation behavior of a rolled AZ31 Mg alloy at room temperature using digital image correlation (DIC). When the as-rolled sample (AR sample) is subjected to precompresssion along the rolling direction (RD) and transverse direction (TD), the sample’s texture changes from the typical normal direction (ND)-oriented basal texture to the RD- and TD-oriented basal textures, respectively, because of the lattice reorientation by {10– 12} twinning. During tension along the RD, the AR sample and the sample precompressed along the TD and subsequently annealed at 250 o C (TDCA sample) accomodate the tensile strain via dislocation slip, resulting in high yield strengths and slip-dominant strain-hardening behaviors. In contrast, the sample precompressed along the RD and subsequently annealed at 250 o C (RDCA sample) exhibits a low yield strength and twinningdominant strain-hardening behavior, owing to the vigorous activation of {10–12} twinning during tension. DIC results reveal that in the AR sample, noticeable strain localization occurs at an early stage of tensile deformation due to the difficulty of accommodating strain along the thickness direction. In the RDCA sample, strain distribution is relatively homogeneous via {10–12} twinning, but the rapid strain hardening caused by abundant {10–12} twins causes premature crack initiation. Because the basal planes of most grains of the TDCA sample are aligned parallel to the thickness direction, the thickness strain is effectively accommodated via prismatic slip, resulting in the highest tensile elongation among the three samples.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3