Effects of Electro-force Control on the Microstructure and Welding Characteristic During Resistance Spot Welding

Author:

Kim Wonho,Kim Jaehun,Jun Hyunuk,Kim Jaewon,Lee Eunkyung,Ji Changwook

Abstract

Recently, lightweight vehicle bodies are in increasing demand to satisfy exhaust gas and environmental regulations around the world. In particular, aluminum alloys are widely used to manufacture lightweight parts, because of their excellent properties including corrosion resistance and mechanical properties. After the forming process, the welding process is important for manufacturing aluminum alloy parts. Resistance welding of aluminum alloys has several problems, due to internal weld defects such as cracks, shrinkage cavity, or porosity, which can result from the Al2O3 oxide film on the surface of the aluminum alloy. This study investigated electrode-force type controls to improve the weldability of the aluminum alloy. It was found that a high electrode-force on squeeze time can collapse the Al2O3 oxide film on the surface. It can reduce defects in the nugget by about 42%, by reducing heat input energy, compared to the continuous electrode-force 4 kN (reference value). Also, with high electrode-force during the hold time, defects were reduced by about 80%, by increasing the cooling rate. The weld quality has a great influence on the electrode-force type control, and internal defects in the nugget are greatly affected by the electrode-force on hold time.

Funder

Ministry of Economy and Finance

Ministry of Trade, Industry and Energy

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3