Machine Learning Guided Prediction of Superhard Materials Based on Compositional Features

Author:

Nam Chunghee

Abstract

In this study, the mechanical properties of materials were predicted using machine learning to search for superhard materials. Based on an AFOW database consisting of DFT quantum calculation values, the mechanical properties of materials were predicted using various machine learning models. For supervised learning, the entire data was divided into training data and test data at a ratio of 8:2. Since the discovery of superhard materials can be predicted based on the bulk modulus and shear modulus, the bulk modulus was primarily predicted using only the chemical compositional ratio (chemical formula), and then the shear modulus was obtained using the predicted bulk moduli. To obtain good prediction performance, cross-validation and hyper-parameter tuning were carried out. Each characteristic was predicted using XGBoost, one of the ensemble algorithms, and its performance was compared to the treebased machine learning of RandomForest and Support Vector Machine regression using the coefficient of determination (R<sup>2</sup>) and root-mean-square-error (RMSE) as metrics. For the recently introduced four superhard materials (Mo0.9W1.1BC, ReWC0.8, MoWC2, and ReWB), the results of this study were similar to those of previous studies including the experimental values or the DFT quantum calculations. The shear modulus was underpredicted, which can be understood since structural properties were not considering as a feature in our machine learning models.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3