Investigation of Phase Transformation and Mechanical Properties of A356 Alloy with Cu and Zr Addition during Heat Treatment

Author:

Song Tae-Ung,Koo Ja-Uk,Jeon Seung-Byeong,Jeong Chang-Yeol

Abstract

Cast A356(Al-Si-Mg) alloys are widely used in automotive and general applications because of their mechanical properties and castability. Al-Si-Mg-(Cu) alloys typically lose their strength above 170 o C due to coarsening of precipitates, which limits their application to components. To maintain their strength at elevated temperature, Al-Si-Mg-(Cu) alloys are modified by adding transitional metals. Several studies have been carried out to evaluate the effect of Zr addition on the high temperature mechanical properties of cast Al-Si alloys because Zr can form thermally stable phases such as Al3Zr. Despite the relative studies on the influence of Cu and Zr on the mechanical properties of cast Al-Si-Mg-(Cu) alloys, investigations of the effect of Zr on the phase transformations and the mechanical properties during heat treatment remains limited. In this study, the effects of added Cu and Zr on the phase transformations and the mechanical performance during heat treatment of A356 cast alloy were investigated. Needle-like and block-like (Al,Si)3(Ti,Zr) dispersoids formed as some Si and Ti replaced Al and Zr in Al3Zr crystal structures were generally observed. Furthermore, with increasing solution treatment time, the size of Zr dispersoids was reduced, and smaller Zr particles were precipitated at the same time, which caused a decrease in the area fraction of the Zr dispersoids. In addition, the metastable L12 structures of Zr dispersoids in Al-Si-Mg-Cu-Zr alloys were transformed into stable D023 during solution heat treatment as the Cu addition accelerated the transformation. Tensile and low-cycle fatigue (LCF) tests were performed to reveal the effects of (Al,Si)3(Ti,Zr) dispersoids on mechanical properties. As a result, elongation at elevated temperature was highly increased, while maintaining strength, according to the increase in solution heat treatment time, which improved low-cycle fatigue properties.

Funder

Korea Energy Technology Evaluation and Planning

Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3